Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Results Phys ; 37: 105501, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1796160

ABSTRACT

The world health organization (WHO) has declared the Coronavirus (COVID-19) a pandemic. In light of this ongoing global issue, different health and safety measure has been recommended by the WHO to ensure the proactive, comprehensive, and coordinated steps to bring back the whole world into a normal situation. This is an infectious disease and can be modeled as a system of non-linear differential equations with reaction rates which consider the rapid-test as the intervention program. Therefore, we have developed the biologically feasible region, i.e., positively invariant for the model and boundedness solution of the system. Our system becomes well-posed mathematically and epidemiologically for sensitive analysis and our analytical result shows an occurrence of a forward bifurcation when the basic reproduction number is equal to unity. Further, the local sensitivities for each model state concerning the model parameters are computed using three different techniques: non-normalizations, half-normalizations, and full normalizations. The numerical approximations have been measured by using System Biology Toolbox (SBedit) with MATLAB, and the model is analyzed graphically. Our result on the sensitivity analysis shows a potential of rapid-test for the eradication program of COVID-19. Therefore, we continue our result by reconstructing our model as an optimal control problem. Our numerical simulation shows a time-dependent rapid test intervention succeeded in suppressing the spread of COVID-19 effectively with a low cost of the intervention. Finally, we forecast three COVID-19 incidence data from China, Italy, and Pakistan. Our result suggests that Italy already shows a decreasing trend of cases, while Pakistan is getting closer to the peak of COVID-19.

2.
Chaos Solitons Fractals ; 139: 110042, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-626065

ABSTRACT

The aim of this study is to investigate the effects of rapid testing and social distancing in controlling the spread of COVID-19, particularly in the city of Jakarta, Indonesia. We formulate a modified susceptible exposed infectious recovered compartmental model considering asymptomatic individuals. Rapid testing is intended to trace the existence of asymptomatic infected individuals among the population. This asymptomatic class is categorized into two subclasses: detected and undetected asymptomatic individuals. Furthermore, the model considers the limitations of medical resources to treat an infected individual in a hospital. The model shows two types of equilibrium point: COVID-19 free and COVID-19 endemic. The COVID-19-free equilibrium point is locally and asymptotically stable if the basic reproduction number ( R 0 ) is less than unity. In contrast, COVID-19-endemic equilibrium always exists when R 0 > 1 . The model can also show a backward bifurcation at R 0 = 1 whenever the treatment saturation parameter, which describes the hospital capacity, is larger than a specific threshold. To justify the model parameters, we use the incidence data from the city of Jakarta, Indonesia. The data pertain to infected individuals who self-isolate in their homes and visit the hospital for further treatment. Our numerical experiments indicate that strict social distancing has the potential to succeed in reducing and delaying the time of an outbreak. However, if the strict social distancing policy is relaxed, a massive rapid-test intervention should be conducted to avoid a large-scale outbreak in the future.

SELECTION OF CITATIONS
SEARCH DETAIL